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ABSTRACT

An experimental and analytical investigation of heat transfer from a horizon-
tal, thin, square plate inside of an enclosure has been carried out. Experimental
results have been obtained from both the upward-facing and the downward-facing sides
of the heated plate. Starting with the integrated momentum and energy equations,
approximate solutions have been obtained for heat transfer in the laminar and the
turbulent regime that correlate well with own experimental data and the results of
other investigators. Radiative heat transfer correction was given a speclal atten-
tion. Effects of the enclosure-related recirculation of the test fluid, as well
as effects of simultaneous heat transfer on both sides of the plate, caused an early
transition, and indicated a high level of internal turtulence.

INTRODUCTICON

Heat transfer from horizontal, heated plates by far has not received the atten-
tion accorded to other geometries. There appears still to exist a general scarcity
of representative experimental data, in particular in the turbulent regime. As heat
transfer by free convection, for moderate temperature differentials, is of the same
order of magnitude as that by radiation, the need for radiation correction during
experimentation cannot be disregarded. Therefore, the experimental results below
have been carefully checked for the effects of radiation. Also, equations of the
boundary-layer type are set up, describing free convection on both sides of a hori-
zontal plate of finite dimensions, heated electrically. Similarity is assumed for
both the velocity and +temperature profiles. These assumptions are then Justified
by a close agreement between the results of the analysis and the experimental find-
ings and the literature on the subject. The solutions obtained apply for laminar
as well as for turbulent free convection. Due to highly sheltered conditions inside
the chamber where the present experiments were carried out, undesirable disturbances
like uncontrollable small air movements were eliminated. Ample space between the
walls of the chamber and the test plate should have made the resulting free convec-
tive flow essentially undisturbed by the presence of the confining walls.

SYMBOLS

A1 area of specimen, m

a thermal diffusivity, m>/s

a constant in reference velocity equations, s
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c specific heat at constant pressure, J/(X kg)

* -
Gry, Gr Grashof number, gBLB(Tw - qn)/vz, GrL/LB, n2

heat transfer coefficient, W/(mzK)

h

k, k thermal conductivity, W/(m K); empirical constant in expression for a
K numerical constant in expressions for the Rayleigh number
P pressure, N/m2

Pr Prandtl number, v/a

q, Q heat flux density, W/mz; heat flow rate, W

r, R coordinate, radial direction, m; radius of test plate, m
R gas constant, J/(keg K)

Rer Reynolds number, Ur/v

Ra Rayleigh number, Gr Pr

T thermodynamic temperature, K

u, U dr/dt, velocity ; reference velocity, r-direction, m/s

v specific volume, m3/kg

w, W dz/dt, velocity ; reference velocity, z-direction (perp. to plate), m/s
Z coordinate perpendicular to plate, m

Nup Nusselt number, hL/k

B cublc expansion coefficient, K-l

o} boundary-layer thickness, n

61 emissivity of specimen

v kinematic viscosity, mz/s

p mass density, kg/m3

o) Stefan-Boltzmann constant, w/(KLP mz)

0 reduced temperature, T - qm, K

In turbulent regime, u, U, w, and W represent mean-flow velocities
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Subscripts:

m condition where maximum velocity occurs in the polynomial expression
W " at the wall of plate
00 " far away from wall

EXPERIMENTAL TEST SET-UP

In order to make the intended free-convective experiments reasonably accurate,
it was decided to test the specimens,that were to be used as the horizontal plates
in the tests, independently for emissivity under high-vacuum conditions. Therefgﬁe,
a high-vacuum chamber was built first, that could contain pressures as low as 10
mm Hg, with the mean free path of molecules inside long enough to eliminate convec-
tion, and to leave only radiation as the mode of heat transfer. Conduction along
the specimen support wire, and the heater and the thermocouple wires was calculated
to be less than 1% of the total heater input. For free-convective measurements, at-
mospheric pressure inside of chamber was reestablished.

As the total area of specimens, Al’ represented only 2.1% of the wall area of
the vacuum chamber (Fig.l), the required emissivity could be calculated from the
formula " L
Q= €0 AT - T)) (1)
The emissivities measured with this set-up are seen in Fig.2. They all appear to
be of the right order of magnitude, when compared with results from the literature,
and appear to be adequate for making radiative-loss correctlons in free-convective
measurements more realistic.

BASIC EQUATIONS OF THE PROBLEM

Let's now consider natural convection flow of a Newtonian, single species fluid
over a horizontal surface in an axisymmetric flow, with the coordinates r and z.
The flow is in the steady state, the velocity field consists of u = dr/dt and
w = dz/dt, and the corresponding temperature field is T = T(r,z). The acting sur-
face force is the pressure, and the body force is the gravitational force, g, all
acting on a horizontal plate 86.0 mm in diameter which, in turn, gives rise to con-
vective flow considered positive in the direction towards the center of plate; at
edge of plate, r = 0. We assume that this flow is amenable to analytical treatment
using the boundary-layer theory approach, together with Boussinesq approximation to-
wards the treatment of the variable physical properties. Also, there is assumed si-
milarity of velocity and temperature profiles. Then the continuity, momentum, and
the energy equations assume the form

d(ru) + d(rw) _ 0 (2)

or o3 >
ou ou _ _129P ou
Usr T W5z T p dr VT (3)
1 3P 9z
0 =-25.+ e(T-T) (%)
P oz 0
¥ (5)
or 3z 2



with the boundary conditions:

at z=0,u=w=0; T

!

TW = const; at the edge of plate, r =0, and u = 0 (6)
at z=6,u=0, T=T; du/dz = 3T/3z = 0 (7)

On differentiating eq. (4) with respect to r, and integrating it with respect to z,
we have

2 -8/

o =

. ar(T - T ) dz (8)

a/
H

This approach to free convection on a horizontal plate, apparently first outlined
by Stewartson [1], for two-dimensional flow, is applied here to three-dimensional,
axisymmetric flow. Thus, from the continuity equation, we have

w:—foz('g—;l‘+%) dz (9) ’

Equations (8) and (9), on substitution in eq. (3), after partial integration,
yield

% %E( 2 4z) = g8 S Lfé - T )dz] dz - v (az)W (10)

Equation (5) may be transformed in a similar fashion after a partial integration.
Letting § = T - T _, and assuming that & (hydrodynamic) ~ & (thermal), there results

cptd(rduo @) = -k B, (11)

Additionally, letting the velocity and temperature profiles be
2 2
=U (z/6)(1 - 2/8)°; o= 6. (1 - z/8) (12)
as proposed, for example, by BEckert and Drake for a related problem [2], and letting

m I

v=c @ s=0,x (1)
a speedy solution of egs. (10) and (11) is obtained. With B = 1/T,, we get

i %; (w0%) = 17.5 g8 6 a5/ar - 105 v(U/6), and (1%)

r dr (rUp 8) = 60 ap /5 (15)

which, after eq. (13) has been substituted, yield

(2m + n + 1)020 L o 568 g - cg 2ol _ 4105 (c,/c,) ™™ ana (16)

. m+n1 6Oarn/02 . (17)

For similarity solutions, both sldes of these equations must be independent of r;

this is true if m = 1/5 and n = 2/5 for the present geometry. Then egqs. (16) and
(17) yield, with Gr* = Gr/L3

= 2.978 a Pr¥/3(o/1t + Pr)"%5 ()5 ama
= 3,548 Pr ¥ 5(9/1l + Pr)t/5 (ar") /3

(m+n+1) c,c

¢
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from which, together with eq. (13) is calculated the local heat transfer coefficient

b, = /0, (18)
while the average heat transfer coefficient becomes
by = 0.705 k pr2/5(0 643 + pr)t/ 5(cr™ )L/ 572/5 (19)

In order to obtain a formula for the average heat trangfer coefficient
based on the sid¢ L of an e%yivalent square plate, we let 12 = ﬁRz, such that L
(equivalent) = m2R, hg = " 5, and Nup, = hiL/k, or

Nu, = 0.886 pr2/5 (0.643 + pr)/5 GrL1/5 (20)

For air (Pr = 0.72), this generates the Rayleigh number, Ralf G;iPr, based on L, or
- 1/5

Nu; = 0.780 Ray (21)

for a horizontal square plate heated on the top side only. With the present choice
of coordinates, 8 = 0 at the edge of plate. In the case of a horizontal plate,
heated at both sides, & % 0 at the edges. According to the literature on this sub-
ject (cf. reference 3, for example), a horizontal plate heated on both sides has
its heat transfer on the upper side appreciably increased by formation of a warm air
"bubble" on its lower side. It appears in the present case that increasing the area
of plate by about one fifth generates an "effective area" that shows realistically
the effect of heating of the bottom side of plate on heat transfer on the upper side
in the form of an "effective radius", Reff

Reff =1.095 Ractual (22)
to be used as the upper limit in the evaluation of the average heat transfer coeffi-
cient

hooopp = 0.816 k Pr2/5 (0.643 + Pr)'1/5 Gr1/5/R (23)

which, for example, for Pr = 0.72, results in
1
Nu; = 0.902 Ra; /5 (24)

The velocity and temperature profiles applicable here as per egs.(6) and (7)
satisfy the physical conditions of the problem at hand, egs.(2) - (5): and reduce to
zero for z > 6., They are also for z<¢& qualitatively what can be reasonably expec-—
ted in free convective flow under conditions of conservation of mass and energy,
regardless of orientation of flow, with exception of a small area near the plate's
center, where an upward-pointing jet is generated, as has been already observed by
Stewartson [1]. This effect will be accounted for below in a separate discussion.
Other velocity and temperature profiles have been considered. It may be seen from
the comparison with the experimental results {cf. discussion below) that egs. (21)
and (24) come already reasonably close to physical reality. This is perhaps the
best Justification of the methods used above, and for the particular u and 6 used.

Experience teaches us that in free convection inside an enclosure (cf. McAdams

[5], p. 182) turbulence may develop already at relatively low Grashof mumbers. For
the case of heated, horizontal plates, this is explainable by the destabilizing ef-
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fect of the upward-directed buoyant force on the boundary-like layer formed by the
fluid flowing in the direction tangential to the plate. For developed turbulent
flow, the last term in eq. (10) may be replaced by the semi-empirical expression

0.0228 U? (v/08)P(s /5 )P 3%°P (25)
and the right-hand side of eq. (11) may be defined as

0.0228 c p Uo, (v/Us)P Pr'2/3(6/6m)P P (26)

while the velocity and temperature distribution may be written (cf. Eckert and Jack-
son [ 4], and reference 2, p. 324) as

u=UJ (z/é)l/q(l -2/8)% ;3 o= o [1 - (z/a)l/t] (27)

with the exponents q, s, and t determined later.

Since egqs. (25) and (26) were originally based on the maximum velocity in the
boundary layer, occurring here at z = 6 , a normalizing scale factor is introduced
in eq. (27), assuring that u/ U=1.0 when z = Gm applies. It may be shown that u
peaks out when z = &p = 8/(q*s + 1), while the nominal length & itself signifies to
what extent the effect of heating from the plate penetrated the fluid above. The
numerical constant in eq. (25) may be approximated by the formula

¢(p,q) = 1.013 (0.92 g + 2.30) %4 (28)

based on results of Wieghardt (cf. Schlichting [6], p. 601). With p = %, eq. (25)
becomes the Blasius formula, linked to q = 7 in egqs. (27) and (28); when p = 1/5,

@ = 9 applies. It is felt that with these changes, eqs. (25) to (28) will be repre-
sentative of turbulent flow in general, regardless of orientation. Furthermore,
eqs. (27) and (28) satisfy the boundary conditions for u and § at z = 0 and z = &
in a satisfactory manner; with these substitutions, with the required integrations
carried out, egs. (10) and (11) yield the relations

32 Il(l/r)%;(rUzé)

J 15(1/) %;(xua)

I, 8 0 5d6/dr - K3U2(v/U6)pJ2-p and (29)
K, U(v/06)® py2/3 j1-P (30)

Assuming again validity of eq. (13), eqs. (29) and (30) yield after a few
transformations the expression for the local Nusselt number, for m = 1/(2+3p), and

n = 2m
' 1- -m(1- 2 -
M, = JK, (Kz/Kl)m(K5/K4)m( 30)p,™(1-3P) (4 4 py. /3K4/K1) "Ra " (31)
and the average Nusselt number for an equivalent square plate with side L,
- - — — —1 -
N, = JK5(K2/K1)m(K5/K4)m(1 3p)p,m(1-30) (4 Pr2/3Ku/K1) m_2_~en(1-3p)p, m

L 1+3m L
(31a)
In egs. (31) and (3la), the use of J should be considered entirely empirical; the
constants Kn below stand for the integrals based on eqs. (27) and (28):
- - P
Ky = Kg = C(p,a) (8/5)

K1 = (2m+ n+ 1)/(U26)J’§u2 dz = (2m + n+ 1) I1
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K, = n/(ewédé/dr) . IS(J“ZS g—re dz) dz = n I,= n/(2t + 1)

K, = (m+ n+ 1)/(er) -J‘g’ue dz = (m+ n+ 1) 13

With the use of the Blasius formula for wall shear stress and heat transfer,
and s = 8 and t = 4 in eq. (27) results have been obtained that for 5x105 < Ra <
10° deviate for less than + 1.5% from the least-squares fit curve representing the
present experimental data, or with m = 4/11 ~ 0.364, and Pr = 0.72,

Nu, = 0.104 RaLo'BéLL (32)

L
Here, m = 0.364 is somewhat lower than the experimental value of m = 0.384. The ex-
perimental value of m was closely approximated with m=0.385, when p=1/5, q = 9,
s=8and t =1 in egs. (27) and (28) was used, tut the constant in eq. (3la) was

6% too low vis-a-vis experimental data. In order to get the commonly cited in the
literature value of m = 1/3 for the turbulent, free-convective heat transfer from
the upward-pointing, horizontal plate by the present method, p = 1/3, ¢ = 5, s = 3,
and t = 5 would have been required in egs. (25) to (28), to yield

- 1/3
Na, = 0.150 Ray (32a)
Equation (32a) seems to fit experimental data of others, for free convection with-
out recirculation, reasonably well.

The analysis outlined above has been carried out along the lines suggested in
references 2 and 4, but modified in several respects to fit the physical require-
ments of a horizontal plate of finite dimensions, heated and pointing upward. As is
stated in reference 4, the exponent of Ra, m = 2/5, fitted very well experimental
data for turbulent heat transfer, for free convection on vertical plates and a ver-
tical cylinder. It is seen that semi-emplrical approaches can be used to advantage
where the exact analysis still fails to give answers of practical significance.

EFFECTS COF FREE CONVECTION ON HEAT TRANSFER AT CENTER OF A HORIZONTAL PIATE

It is obvious from the consideration of the continuity equation alone that
free convective flow, for the present geometry, will generate near the center of
plate a vertical jet, known as the thermal plume. For purposes of the analysis be-
low, we assume that temperature distribution within the plume is still given by
eq. (12), it velocity follows the profile u = U(z/ém), z=6,,u=10U, 2>y, and

U=z-ar ;3 W=2az (r=2z=0 at center of plate) (33)

where 1 = 1, axisymmetric flow, and i = 0, plane flow. U and W in eq. (33) satisfy
identically the continuity equation. By considering a volume element (27 r)*drs
and the heat fluxes in and out by g¢onvection, as well as by conduction at the bot-
tom through the area element (an)ldr, after the substitutions for u and 6 have been
made, there results the expression

30

=3 a i
T l(pcp azx¥£f ue dz) = k(g;)w (34)
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Taking 6 from eq. (12) and U as stated above, the integral in eq. (34) may be writ-
ten, for 6,/6 << 1, as I = -ar?5/3. It yields for & (which is actually the height
of the present thermal pluméj,the expression1

5 = (3a/a)? (35)

Usi eq. (18), we may write Nu, = 2R/8. The still required expression for a
in eq. (3;? is now to be derived. If differential pressure at the center of theplate
is proportional to_k_gpﬁewz/R, working through a distance dz, that accelerates a

fluid element from velocity O to W (here.g_ is the constant of proportionality), one

gets plkﬁlgé Lf Bgewz dz = p dA ﬁyw (dw/dz) dz, on assumption of inviscid flow

there, the simple result

1
W= (Beo K'/R)? = (36)
From comparison with eq. (%3), eq. (36) yields
a= (Bgewli’/l%)?/z = (1! erv?/8)?/2, ana (37)
1 PR
Nup = (2/3)2 k Pr® G}:‘R"L (38)
1
For air with Pr = 0.72, and L = m°R, there results
4
Nuy = 0.864 k RaL“ (39)

Integral methods generate useful results that still depend on the approximating po-~

lynomials needed to represent u and 6. Thus, if in the present case we use eq. (12)
for both u and 9, Wt with the reasonable constraint that, at z = Op» u = U, so that
eq. (33) is satisfied, we obtain from egs. (34) and (37)

=

Nuy = 0.710 k Ray* (39a)

Application of the same procedure to the case of an infinite strip (i = 0 in
eqs. (33) and (34), u and 6 according to eq. (12), and scale factor J = 27/4 applied
to u), yields for a strip of the width 2b

1
Nu, = 0.62 k Rab’* (40)

It is to be emphasized that eq. (34), obtained from a direct summing up of the
convective and conductive contributions to the control volume, differs in sign from
eq. (11), obtained from the exact integration of the energy equation, as the chosen
coordinate system is different. Also, as the hydrodynamic information on & is not
required, the momentum equation is not at all involved. This greatly simplifies the

problem. The use of scale factor J here is needed to satisfy the continuity, eqs.(33)

RELATIONS FOR A HORIZONTAL DOWNWARD-FACING PIATE

It appears that for this geometry the conventional boundary-layer approach is
not possible (cf. reference (3), for example). In the present case, the only reason
for the movement of fluid is its thermal expansion, due to the contact with the wall
at T,. Therefore, the resulting flow is similar to that occurring in forced, axisym-
metric stagnation flow, for which an exact solution of the Navier-Stokes equations
exists (reference 6, p. 100). One can expect the fluid temperature near r = O
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to vary, on the average, at some distance below the plate's center, as
0= (0,/2) (1 - z°/8%) ()

while simultaneously the velocity terms for the potential flow related to the pre-
sent problem follow the relations satisfying identically the continuity equation:

U=zar ; W= -2az (42)

that applies to any incompressible flow, to any geometry. If the fluld in question
is perfect gas, the term aP/ar in eq. (2) may be now transformed as ( with Pv = BT)
6 r
3P _ _ (3By (3T _ 2 __3_P ’w
T dr (aT)v(ar) = R ewr/R » O T3 T T R2
using eq. (41) for T= 0 + Qn. In quiescent gas, P = g/v times an element of length
aﬁsumed here to be proportional to R. As a 1s still a free constant, we may assume
k* to be that constant of proportionality, without the loss of generality. Then,

2 L

JOB b Beo x/(Rv) = &Y orvZr(ry) Lietting a2 = k

* 2
= Gr v°/R, there results

-8 = oo (43)
With the present definition of a, the pressure-gradient related term in the
momentump equation is linked to the acting temperature differential, 6 . Writing
u=71rf (z), and w= -2 £f(z), and using a new variable #, = (a/v)?z, eq. (3) above is
readily solved. This solution is considered as good for the complete Navier-Stokes
equation (reference 6, p. 100). The corresponding solution of the energy equation
is available (cf. references 7 and 8). For Pr near unity, we have
1

0.4 0
Nu_ = 0.763 Pr Rer2 (L)

This is a boundary-layer type solution, based on a exact solution of the Navier-
Stokes equ7tions. As here Rer = Ur/v, with a from eq. (43), we get Rer = k% .
(Gry r/R)1/2 . With Pr = 0.72, and L = 2R, there results for air

4

Nu; = 0.630 k Ra* (45)

where k 1san experimental constant with a value k = 0.5 in view of the constant
K=0.27 and m = 1/4 in the original correlation due to Saunders and Fishenden, for
example [ 9]. It must be stressed that the present approach is valid only in the re-
gion where eqs. (41) and (42) continue to apply, that is, near the center of a cir-
cular plate (1 = 1), and near the center of a long strip, where r is the distance
away from that center, (1 = 0). It is of some interest to note that a solution can
also be obtained through a direct integration of eq. (11) here, for the same veloci-
ty and temperature distributions as in eq. (12), but using a normalizing factor J =
27/4, such that eq. (42) is satisfied. Then from § = (a/g)i/g' 2.1, and Pr = 0.72
we have the formula )
Nu; = 1.00 k' RaL‘* (46)

The term k' expresses the effect of geometry at hand as well as that of the approx-
imating polynomials used. k' = 0.25 yields K that comes close to the above Saunders
and Fishenden result.

It is seen from the discussion above that methods, based both on the exact so-
lution of the Navier-Stokes equations, and on the integrated energy equation method,
lead to results that are experimentally verifiable. The relations for streamline
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and temperature distribution, calculated by Miyamoto et al. 10] agree qualitatively
with our egs. (41) and (42) and are also suggested by the scheme shown in Fig. 3.
In reference 10 are also reported results of Sugawara and Michiochi [11], where X =

0.264 and m = 1/4, that are based on the boundary-layer approximation.

In addition to our eqs. (45) and (46), and to solutions reported in refer-
ences 10 and 11, there exist also several approximate analytical solutions for the
present geometry with m = 1/5 proposed (cf. references 12 and 13). As an expla-
nation for this one should consider that as the exact solution of the governing mo-
mentum equation is only valid near r = 0, and with m = 1/4 applicable for the associ-
ated heat transfer problem, the flow starting far away from the stagnation point,
at the edge of the plate, would result in a quasi-boundary layer flow for which, at
least initially, m = 1/5 would be entirely appropriate. The real flow must be actu-
ally nonsimilar for a good portion of 0 < r < R.

DISCUSSION OF EXPERIMENTAL RESULTS

It is interesting to note that the present experimental results shoy that
transition to turbulent flow has already occured as early as at Gr = 5x107/, in a-
greement with the discussion by McAdams [5] , P.182, as the side effect of the con-
finement in the relatively small vacuum chamber. Our own experimental results on
free convection on an upward-facing, horizogtal heated plate are shown in Fig. 4.
It is seen from Fig. 4 that, for Ra< 6 x 107 , the experimental data show a rea-
sonable agreement with eq. (24) here, but the number of experimental points for
what is considered laminar free convection on a typical upward-pointing, horizontal
plate, heated on both sides, is not sufficient for a definitive finding. For com-
parison, let's consider the formula proposed by Lewandowski and Kubski [1MJ for a
horizontal plate 100 x 60 mm, heated on one side only,

Nu = 0.66 Ral/? (47)

valid foxr 104 < Ra < 107, with a = 10% error margin, based on experiments with dis-
tilled water, glycerine, and soybean oil. Equation (47) is very close to our

eq. (21) above. On the other hand, Yousef et al. [15] y using Mach-Zehnder inter-
ferometer, and for 107<Ra < 107, in air, obtained

Nu = 0.622 Ral/* (48)

for square plates with L = 100, 200, and 400 mm. A similar exponent of Ra has been
also obtained by a number of other investigators, for air and for the same geometry:
Fishenden and Saunders [16] , Bosworth [17] , Al Arabi and E1-Riedi [18] , for ex-
ample, with K = 0.54, 0.71, 0.70, respectively, all of them for laminar flow. The
experimental constants K come very close to that in our eq. (39a) with k=1.0, but
the range of Ra is similar. The details are shown in Fig. 5. This discussion ap-
plies to the average Nusselt numbers only. It is seen that egs. (21) (horizontal
plate heated on one side only), and (24) (horizontal plate heated on both sides),
this paper, fall unquestionably into the range of the experimental results reported
in the recent literature, although there are differences in the power of the Ray-
leigh nmumber: m = 1/5 is recommended in reference 14 and in this paper (depending
on the flow situation), and in reference 14, while references 15 to 18 report m =
1/4. Also, in this paper, expressions for m = 1/& and m = 1/3 have been derived.

For turbulent convection results shown in Fig.’h, the least squares fit equa-
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tion is
Nug = 0.0799 RaLo'38” (49)

that agrees reasonably well with the calculated formula, eq. (32) here, while in re-
ference 14 the experimental result

Nu = 0.173 Ra1/3 (50)

is proposed, valid for 105 < Ra < 108. This result is typlcal of other experimental
findings shown in Fig.5, where, in addition, references 14 to 21 are included.

From the review of the above it i1s seen that m = 1/3 is very common for the situa-
tions where turbulent free convection takes place on horizontal plates, heated on
one side only. For thin plates, of finite size, heated on both sides in finite en-
closures, m increases somewhat, due apparently to flow instabilities generated by
heat transfer at the bottom of the plate.

To produce the exponent m = 1/3 for turbulent, free convective flow in the
present case, p = 1/3 would have been necessary in eq. (25). It is interesting to
see that most of the experimental results for the upward-pointing, heated plate
show a remarkable similarity with the results for the vertical walls; the finding
of Bckert and Jackson in reference 4 of m = 2/5 is worth noting, as 1t is derived
from a semi-empirical theory, as exemplified here by egs. (25) and (26), and is al-
so backed up by experimental data. It appears that this similarity in free con-
vective heat transfer, in comparing results for horizontal with those for the ver-
tical geometry, lies in the effect of the thermal jet generated at the point where
the boundary flow meets head-on and a thermal plume is formed - something like the
reverse of the situation depicted in Fig. 3. This aspect has also been analyzed
above separately for laminar flow. It is mentioned alsc by Bosworth in reference 17.

For a horizontal plate facing downward, the controversy concerning the vali-
dity of the exponents m = 1/5 vs. m = 1/4 can be resolved with the analysis of the
flow situation, represented here schematically as Fig. 3. The flow on a downward-
facing, heated horizontal plate is visualized. It is seen that near the stagnation
point a thin boundary-layer-like region exists. Then, farther away, the "boundary-
layer" becomes at first thicker, ut that thickness is gradually diminishing, as
the edge of plate is approached. In this fashion, two kinds of existing analytical
solutions, and the corresponding existing dual experimental correlations could be
reconciled, as either of the flow modes may predominate in the given experimental
set-up.

Our own experimental data are shown in Fig.6. It is seen from Fig.6 _that the
flow regime there must have been already turbulent for Ra as low as 6 x 10-. There
is a considerable scatter of the data, indicating a highly unstable flow. Heat
transfer intensity, as represented by the corresponding Nusselt numbers, is roughly
50 % of that existing on the upward-facing side of plate, which is also to be found
in the literature (cf. reference 19). The results shown in Fig. 6 may be correlated
by either of the two equations below. Equation (51) represents the least squares
fit

Nug = 0.0017 RaLO'596 (51)
whi%e eq. (52) represents the limiting case of flow corresponding to p = O in eq.
(25), or .

Mug = 0.006k RaLO'5 (52)
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The relatively large exponents of the Rayleigh number in the present case in-
dicate that some recirculation of the alr in the test chamber was actually taking
place, as the result of simultaneous heating of the bottom and the top of the test
plate, thus representing a kind of synergistic effect. Few other data for the pre-
sent configuration are available for the turbulent regime, for the sake of compari-
son, except those in reference 19, correlated by a formula that represents simply
one-half of the results obtained with the heated flat plate facing upward, with m =
1/3, within + 10%, as

Na = 0.06 Ral/3 (53)

Obviously, more data for this configuration are still required, and our objective
has been to fill this need at least partially. Additional cases for this geometry
are discussed in reference 3. A general comparison of results of various investi-
gators 1s shown in Fig. 7. It is seen from the discussion above that for laminar
free convection, on both sides of the horizontal plate, many investigators still
use correlations of the type Ny = K Ra* while some prefer the supposedly more "theo-
retical" version of Nu = K Ra175.A plausible explanation was given for this discre-
pancy. In reference 17, K occurring in eq. (53) is given as 0.08, without details.

It is worth noting that Mangler's transformation changes relations valid for
two-dimensional flow over a wedge into expressions valid also in three-dimensional
(stagnation) flow, without the change of power of Re, for forced convection. A sim-
ilar phenomenon, by analogy, may be also expected for free convection, with the Rey-
nolds number replaced by its physical equivalent, the Grashof number to one half
power. Moreover, the precise values of K would depend on experimental conditions
and refinements observed while taking measurements, on geometry, boundary conditions
on edges and the details of how the plates were heated. It should also be kept in
mind that the left-hand side of the integrated energy equation is the same for both
forced and free convection, regardless of the flow regime. The right-hand side of
that equation must be changed to an empirical formula when the flow is turtulent,
however.

CONCIUDING REMARKS

For turtulent, free-convective heat transfer, characterized by an exponent m>
0.25, most investigators propose m = 1/3. It is conceivable, however, that for
cases of really well-developed, rough, non-isotropic turbulence, that exponent may
get as high as 0.384 and perhaps even higher than 0.5, as is indicated by the pres-
ent experiments, for the significantly unstable flow at the bottom of a heated,flat
horizontal plate, heated on both sides. This uncertainty is also due to the fact
that experimental results for turbulent free convection for that particular geome-
try are still very scarce, and additional data are needed. Because of relatively
low convective heat transfer coefficient here, the effect of radiation correction
becomes very important. Cases have been found in our experimentation where this
correction for some specimens amounted to more than 50 % of the total heat trans-
ferred. Because of its emphasis on the radiation aspects in this case, and since
both sides of plate were heated, the present investigation may be considered the
first of its kind. The maximum total experimental error is calculated as + 15 %.

A general comparison of the various experimental and analytical correlations
is shown in Figs. 5 and 7, to stress the degree to which the results from the lit-
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erature still differ from each other. It is also believed that, for the space en-
vironment, the present experiment shows that radiation cooling of electronics is
more promising than free-convective cooling, where characteristic velocities are pro-
portional to one half power of the Grashof number. With weak gravitational accel-
eration, Grashof numbers will be small, and effects of convective cooling negli-
gible.

REFERENCES

1. Stewartson, K.: On Free Convection from a Horizontal Plate. ZAMP, vol.IXa, 1958,
PP . 276—282 .

2. Beckert, E. R. G., and Drake, R. M., Jr.: Heat and Mass Transfer. McGraw-Hill,
1959.

3. Bandrowski, J., and Rybski, W.: Analysis of Heat Transfer in Free Convectlon on
Horizontal Plates. Chemical Engineering, vol. 3, 1975, pp. 3 - 16,(in Polish).

L, Eckert, E. R. G., and Jackson, T. W.: Analysis of Turbulent Free-Convection
Boundary-Layer on a Flat Plate. NACA Report 1015, 1951.

5, McAdams, W. H.: Heat Transmission, 3rd ed. McGraw-Hill, 1954,
6. Schlichting, H.: Boundary-layer Theory, 7th ed. McGraw-Hill, 1979,

7. Sibulkin, M.: Heat Transfer Near the Forward Stagnation Point of a Body of Re-
volution. J. of Aeronautical Sciences, vol. 19, 1952, pp. 570 - 571.

8. Hrycak, P.: Heat Transfer from Impinging Jets to a Flat Plate with Conical and
Ring Protuberances. Int. J. Heat Mass Transfer, vol. 27, 1984, pp. 2145-21 54,

9. Saunders, 0., and Fishenden, M.: Some Measurements of Convection by an Optical
Method. Engineering, May 1935, pp. 483-485,

10. Miaymoto, M., et al.: Free Convection Heat Transfer from Vertical and Horizontal
Short Plates. Int. J. Heat Mass Transfer, vol. 28, 1985, pp. 1733-1745.

11. Sugawara, S., and Michioyshi, I.: Heat Transfer from a Horizontal Flat Plate by
Natural Convection. Trans. Jap. Soc. Mech. Engrs., vol. 21, no, 109, 1955,
pp. 651-657, (in Japanese).

12. Schulenberg, T.: Natural Convection Heat Transfer to Liquid Metals Below Down-
ward-Facing Horizontal Surfaces. Int. J. Heat Mass Transfer, vol. 27, 1984,
Pp L) 24’33-4)"’1 3

13. Singh, S. M., Birkebak, R. C., and Drake, R. M., Jr.: Laminar Free Convection
Heat Transfer from Downward-Facing Horizontal Surfaces of Finite Dimensions.
Progress in Heat and Mass Transfer, vol. 2, 1969, pp. 87-98.

14, Lewandowski, W. M., and Kubski, P.: Effect of the Use of the Balance and the

Gradient Methods... Natural Convectlon... Wirme und Stoffiibertragung, vol. 18,
1984, pp. 247-256.

54



15. Yousef, W.W., Tarasuk, J.D., and McKean, W.J.: Free Convection Heat Transfer

from Upward-Facing Isothermal Horizontal Surfaces. J. of Heat Transfer, vol.
104, 1982, pp. 493-500.

16. Fishenden, M., and Saunders, O. A.: An Introduction to Heat Transfer, Claren-
don Press, 1952.

17. Bosworth, R. L. C.: Heat Transfer Phenomena. Wiley, 1952.

18. Al Arabi, M., and El-Riedy, M. K.: Natural Convection Heat Transfer from Iso-
thermal Horizontal Plates ... Int. J. Heat Mass Transfer, vol. 19, 1976,
pp. 1399-1404.

19. Hassan, K. E., and Mohamed, S. A.: Natural Convection from Isothermal Flat
Surfaces. Ibid., vol. 13, 1970, pp. 1873-1886.

20, Fujii, T., and Imura, H.: Natural Convection from Plate with Arbitrary Incli-
nation- Ibidn, VOl. 15’ 19?2' PP- 755“767.

21 . Ishiguro, R., et al.: Heat Transfer .. Flow Instability ... Nat. Conv. .. Hori-
gzontal Surfaces. Proceedings, 6th Int. Heat Transfer Conf., vol. 2, Toronto,
Canada, 1978, pp. 229-234.

22. Aihara, R., et al.: Free Convection along the Downward-Facing Surface of a
Heated Horizontal Plate. Int. J. Heat Mass Transfer, vol. 15, 1972, pp. 2535~
2549,

535




thermocoupe 36
635 ] [ Uermocoup)e it i
/ ;
I oo o | PELCOCE. |
i WIRE SPECIMEN  |[] 6.35mm
|| cLASS BEAD | STE ELTHREAD.
[ NYLON |}
/ 6.2 INSERTS |[
| | HERmoCPL, weaTER, |
/ OLTMETER WIRES
T
6.35 | T  JHERMOCOUPLE 0

Figure 1. Experimental test set-up.

56




10 . —
09t® o eecmmme--

) |

08

0S5t

032

02} a9 -9 -@-_.-_ iy _:@:_:: =,..8

- --~

o1 Srpo-o--- O-—z---p-—-—--- R -

Figure 2. Emissivities of all samples tested. 1 - oxydized aluminum
with Parson’s black coating; 2 - oxydized aluminum with finger
prints; 3 - oxydized aluminum, clean; 4 - oxydized aluminum,
burnished; 5 - polished copper (all results by least squares fitting
method; error margin: less than + 6.5%).
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Figure 3. Schematic representation of natural convection near the
center of a downward-facing, heated plate of finite dimensions.
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Figure 4. Average Nusselt number vs. Raleigh number for
three specimens on horizontal, heated plate facing upward
(maximum error * 15%).
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Figure 5. Comparison of results of various investigators, for a heated,
upward-facing horizontal plate.
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Figure 6. Average Nusselt number vs. Raleigh number for
three specimens on horizontal, heated plate facing downward
(maximum error: + 15%).
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Figure 7. Comparison of results of several investigators,
for a heated, downward-facing, horizontal plate.




